

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Enabling On-Demand Scientific Workflows on a Federated Cloud

Steven C. Timm, Gabriele Garzoglio, Seo-Young Noh, Haeng-Jin Jang KISTI project evaluation

23 October 2014

REPORT of CRADA FRA 2014-0002 / KISTI-C14014

Outline

- History of Fermilab-KISTI Collaboration
- Staffing
- Goals of Collaboration
- Virtual Provisioning and Infrastructure
 - Large scale demo of federated cloud
 - Provisioning algorithms
 - Coordinated workflows
- Interoperability and Federation
 - Automated image conversion script
 - Interoperability with Google Compute Engine and Microsoft Azure
 - Object Storage Investigation
 - X.509 Authorization and Authentication
- Output of Project
- Conclusions

History of Fermilab-KISTI collaboration

- KISTI made available as Open Science Grid resource for Fermilab/CDF use in 2009 with assistance from Fermilab personnel
- KISTI personnel Seo-Young Noh and Hyunwoo Kim worked with us at Fermilab in summer of 2011
 - First virtualized MPI work completed and first voluster prototype
- Cooperative Research and Development first year March September 2013
- Cooperative Research and Development second year March-October 2014

Staffing:

- G. Garzoglio: Principal Investigator
- S. Timm: Project Lead
- H. Kim: Programmer
- J. Boyd, G. Bernabeu, N. Sharma, N. Peregonow: Operations Group
- T. Levshina, K. Herner: User Support
- P. Mhashilkar: GlideinWMS support
- H. Wu, S. Palur, X. Yang: IIT Graduate Students
- A. Balsini: INFN visiting student
- K. Shallcross: Contractor, Instant Technology
- KISTI coordination: Seo-Young Noh

FermiCloud Project Development

Phase 1: (2010-2011)

"Build and Deploy the Infrastructure" Hardware Purchase, OpenNebula

Phase 2: (2011-2012)

"Deploy Management Services, Extend Infrastructure and Research Capabilities"

X.509, Accounting, Virtualized fabric

Phase 3: (2012-2013)

"Establish Production Services and Evolve System Capabilities in Response to User Needs High Availability, Live migration

Fermilab/KISTI Joint Project Goals

Phase 4:

"Expand the service capabilities to serve more of our user communities" Cloud Bursting, AWS, Idle VM, Interop Year 1 of CRADA, 2013

Phase 5:

"Run experimental workflows and make them transparent to users. AWS caching, 1000VM Scale, Ceph, Year 2 of CRADA, 2014

Phase 6:

"Expand Cloud Federation to more sites, stakeholders, data" S3 Caching, Complex service workflow, cost-aware provisioning Year 3 of CRADA, 2015

1000-VM Workflow demonstration.

- Goal for this year was demonstrating scale at 1000 virtual machine level. Previously had done up to 100 on FermiCloud and AWS.
- To get to 1000 VM on FermiCloud we needed the following:
 - A faster and more reliable OpenNebula
 - Network Address space to put that many virtual machines
 - Good provisioning system to deliver and initialize the VM image
- To get to 1000 VM on Amazon we needed the following
 - Better Squid caching (this was limiting factor previously)
 - Faster way to make changes on stock image.
- For both, we needed unified batch submission system

GlideinWMS - Grid Bursting

FermiCloud 1000-VM test

- OpenNebula 4.8 "econe-server" with X.509 authentication
- Routable private network—can reach anywhere on-site Fermilab but not off-site
- 140 Dell Poweredge 1950 servers, formerly part of CDF Farms (vintage 2007) 8 cores, 16GB RAM
- Bluearc NFS as image datastore
 - Qcow2 image is copied to each node and run from local disk.
- Opennebula's own CLI could launch 1000 VM's easily in about 30 minutes
- Issues (all have been worked around temporarily and reported to OpenNebula developers):
 - HTCondor use of OpenNebula API creates one ssh keypair per vm, total number of allowed keypairs is 300
 - Database growth sometimes causes the DescribeInstances call to time out. Can be worked around by aggressive pruning of database.

FermiCloud to AWS conversion tool

SHOAL squid discovery system

Results—NOvA Near Detector Cosmic Ray Simulation

- 20000 jobs total run
- Up to 1000 each simultaneously on AWS and FermiCloud.
- Results sent back to Fermilab dCache servers in the FTS "Drop box"
- On AWS used m3.large instance which can run 2 jobs at once.
- Approximate cost for 6 hours of AWS computing at that scale, \$300.00.

Provisioning Algorithm Details

- 3 Papers on provisioning algorithms this year from student Hao Wu
- Modeling the Virtual Machine Overhead under FermiCloud
 - Published in proceedings of CCGrid 2014, May 2014
- A Reference Model for Virtual Machine Launching Overhead
 - Referee's comments addressed, submitted to IEEE Transactions on Cloud Computing
- Overhead-Aware-Best-Fit (OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead
 - Accepted to MTAGS workshop at SC2014.
- Cost-aware provisioning—Goal to launch virtual machine on platform where it takes least time and money
- Instrumentation improvements made for voluster software.

Object Storage Evaluation

- Goal: find replacement for SAN-based shared file system which is expensive, not scalable, and difficult to maintain.
- Originally intended to look at several object stores including Ceph
- CERN reported favorable experience with Ceph as backend for OpenStack Cinder and Glance (Object and block stores).
- Focus on RBD (remote block device) component of Ceph
- Successfully ran virtual machines in OpenNebula using Ceph Remote Block Devices.
 - Allows live migration capacity
- Can export full image to local disk with RBD export—OpenStack's preferred method
- Tested reliability and stability against failure and reboot
- Tested multiple iozone and rbd exports from virtual machines and from bare metal machines
- Conclusion: promising technology, will defer final implementation until
 Sci. Linux 7 more widely available.

Google Compute Engine / Microsoft Azure

- HTCondor already supported Google Compute Engine
- Now API has completely changed, work has to be redone
- We collected information so HTCondor developers can fix the API
- Also identified bug in the documentation of how to use current Google REST API
- For Microsoft Azure—did basic operations from Web GUI including learning how to upload/download an image.
- Identified basic API's needed to launch a virtual machine, forwarded them to HTCondor developers for eventual inclusion
- Neither Google or Azure supports any open standard of access that is used by any other cloud.
 - Unlikely there will ever be a single API that can contact all.
 - Makes federation tools like HTCondor and GlideinWMS that can contact all even more promising.
- OAUTH2-based system of Google authorization is promising alternative for REST API authentiction that doesn't have long-lived tokens.
- Both clouds willing to give sufficient cost breaks to the government to make it worth our time.

X.509 Authentication/Authorization Study

- Original X.509 authentication code of OpenNebula written by Fermilab
- Key technology in EGI Federated Cloud project as well as FermiCloud.
- But X.509 authentication on ReST API is unusual, most USA cloud sites use (or will soon use) token-based federation and authorization systems such as OAUTH2 or OpenID.
- Amazon will deprecate their SOAP API which was X.509 based at end of this year.
- OpenStack community headed for token-based ReST API's
- We have developed a candidate X.509 authorization system for OpenNebula which can be used in command line, browser, and web API.
 - Should we deploy It or go another direction?
 - Federation with KISTI's cloud is important requirement in decision.
- Results of our review accepted to Cloud Federation Mgmt. Workshop, London, Dec. 2014

Output:

- Journal Papers Submitted to IEEE Transactions on Cloud Computing (Referee comments received and processed)
 - A Reference Model For Virtual Machine Launching Overhead
 (H. Wu et al)
 - Understanding the Performance and Potential of Cloud Computing for Scientific Applications (I. Sadooghi et al)
- Conference Papers Submitted and Accepted
 - X.509 Authentication/Authorization in FermiCloud
 - (Cloud Federation Workshop, London, Dec. 2014)
 - Overhead-Aware-Best-Fit (OABF) Resource Allocation
 Algorithm for Minimizing VM Launching Overhead
 - MTAGS workshop at Supercomputing 2014, Nov. 2014)

Output part II

- Talks
 - 7 talks total—6 at peer-reviewed conferences plus invited talk
 - S. Timm Computing Techniques Seminar @ CERN, May 2014
- Software Modules
 - VM Conversion Tool
 - Shoal/Squid configuration/installation scripts
 - Vcluster enhancements for intelligent VM launching
- Documentation
 - How to use Google Cloud and Microsoft Azure Cloud
- 2 more Conference papers in preparation
 - Squid/Shoal Client + running on AWS and FermiCloud->CHEP
 - Ceph comparison with Fusion FS -> Cluster 2015.

Joint Project Effort

PERSON	ADJUSTED FTE Effort
G. Bernabeu	0.76
G. Garzoglio	0.45
H. Kim	3.44
N. Peregonow	0.22
S. Timm	2.42
TOTAL	7.26

Expense	Money (\$US)
3 IIT Students	33540
INFN Student*	6000
Consultant	32800
AWS Computing*	1579
Travel*	5233
Temp housing	1088
Indirect cost	16770
DOE Fee	3000
TOTAL	100000

Future Focus

- Workflows and Interoperability
 - GlideinWMS and HTCondor support for Google, Microsoft, OpenStack Nova
 - Grid servers on the cloud
 - Investigation of using S3 for temporary input/output cache
 - Policy-based provisioning
 - Investigate running CERN LHC workflows on federated cloud.
- Infrastructure as a service/Facilities
 - Auto-scale data movement and proxy services based on demand
 - Object storage investigation
 - Unified installation/configuration/monitoring for bare metal and virtual machines
 - Hooks to enable automated launch of special worker nodes, interactive login machines
 - User request particular platforms on demand.

CRADA project summary 2014

- We successfully have scaled up scientific workflows to the 1000-Virtual Machine Scale
- Larger cloud remains accessible from production system
- Four real Fermilab experiments have run real workflows on cloud in past year
- Good progress made towards new commercial clouds
- Student's work in production and benefitting stakeholders
- Relationship with KISTI remains strong:
- Contribute to joint software development of voluster
- Cross-train on Grid and Cloud issues

21

Acknowledgements

- None of this work could have been accomplished without:
- The excellent support from other departments of the Fermilab Computing Sector – including Computing Facilities, Site Networking, and Logistics.
- The excellent collaboration with the open source communities especially HTCondor, and OpenNebula,
- The GlideinWMS project for enhanced cloud provisioning
- As well as the excellent collaboration and contributions from KISTI.
- Illinois Institute of Technology students and professors Ioan Raicu and Shangping Ren
- INFN students.

